
174 Acc. Chem. Res. 1993,26, 174-181 

Beyond Transition-State Theory: A Rigorous Quantum Theory 
of Chemical Reaction Rates 

WILLIAM H. MILLER 
Department of Chemistry, University of California, and Chemical Sciences Division, 

Lawrence Berkeley Laboratory, Berkeley, California 94720 

Received September 15, 1992 

Introduction 

Transition-state theory (TST),’ as all chemists know, 
provides a marvelously simple and useful way to 
understand and estimate the rates of chemical reactions. 
The fundamental assumption2 of transition-state theory 
(Le., direct dynamics, no recrossing trajectories; see 
below), however, is based inherently on classical 
mechanics, so the theory must be quantized if it is to 
provide a quantitative description of chemical reaction 
rates. Unlike classical mechanics, though, there seems 
to be no way to construct a rigorous quantum mechan- 
ical theory that contains as its only approximation the 
transition-state assumption of “direct dynamics”. Pe- 
chukas3 has discussed this quite clearly (and it will be 
reviewed below): as soon as one tries to rid a quantum 
mechanical version of transition-state theory of all 
approximations (e.g., separability of a one-dimensional 
reaction coordinate) beyond the basic transition-state 
assumption itself, one is faced with having to solve the 
full (multidimensional) quantum reaction dynamics 
problem. But a correct treatment of the full quantum 
dynamics must yield the exact rate constant and is no 
longer a transition-state “theory”. 

Though there is no rigorous quantum prescription 
for determining the rate constant of a chemical reaction 
that avoids, in one guise or another, the necessity of 
solving the Schrodinger equation, there is nevertheless 
a rigorous theoretical approach4 that avoids having to 
solve the complete state-to-state reactive scattering 
problem; one does not avoid solving the Schrddinger 
equation, but needs to solve it only locally, in the vicinity 
of the transition state, with no explicit information 
about reactant and product states being required. After 
reviewing some of the notions alluded to above, the 
purpose of this Account is to describe this “direct” 
theoretical approach for calculating chemical reaction 
rates, the logical conclusion in the quest for a “rigorous” 
quantum mechanical version of transition-state theory. 

Classical Mechanics 
It is useful first to review very briefly the situation3g5 

within the realm of classical mechanics and establish 
some definitions. For comparison with quantum ex- 
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pressions later it is convenient to express the thermal 
rate constant k(T) as a Boltzmann average of the 
cumulative reactive probability N(E),  

k(T) = C2?rhQr(T)1-’ J-:d.E e-E’kT N(E) (la) 
where N is given by 

N(E)  = (2?rh)-(”’) JdpJdq 6 [E-H(p,q)l 

F(P,q) x(p,q) (1b) 
and Qr(T) is the partition function (per unit volume) 
of reactants. 

[Equations l a  and l b  can be combined to express the 
thermal rate constant more explicitly, 

F(P,a) X(P,9) ( IC)  
but in this paper we will focus on the cumulative reac- 
tion probability N(E) as the primary object of interest. 
Sometimes, in fact, usually for unimolecular reac- 
tions, it is the microcanonical rate constant 
k(E) [Bnhpr(E)]-’N(E) which is the quantity of 
interest, where pr(E) is the density of reactant states 
per unit energy.] 

The integrand of eq l b  giving the cumulative reaction 
probability consists of three factors: a statistical factor 
6[E-H(p,q)l (the microcanonical density), the flux 
F(p,q), and a dynamical factor x(p,q). [The classical 
Hamiltonian H(p,q) is assumed throughout this paper 
(for simplicity of presentation; it is not essential) to be 
of Cartesian form, 

(2) 
where (q,p) (qk,pk), k = 1, ..., F are the coordinates 
and momenta of the system.] The fluxF(p,q) is defined 
with respect to a dividing surface in coordinate space 
which separates the reactant side from the product side. 
If the dividing surface is defined by the equation 

H(p,q) = p2/2m + V(q) 

(1) (a) An interesting set of papers by many of the founders of the 
theory-Wigner, M. Polanyi, Evans, and Eyring-is in the following: 
Reaction Kinetics-a General Discussion. Trans. Faraday SOC. 1938,34, 
1-127. (b) For a reasonably recent review, see: Truhlar, D. G.; Hase, W. 
L.; Hynes, J. T. J. Phys. Chem. 1983,87, 2664. 

(2) Wigner, E. Trans. Faraday SOC. 1938,34, 29. 
(3) Pechukas, P. In Dynamics of Molecular Collisions, Part B (Vol. 

2 of Modern Theoretical Chemistry); W. H., Miller, Ed.; Plenum: New 
York, 1976; Chapter 6. 

(4) (a) Seideman, T.; Miller, W. H. J. Chem. Phys. 1992,96,4412. (b) 
Seideman, T.; Miller, W. H. J. Chem. Phys. 1992, 97, 2499. (c) Miller, 
W. H.; Seideman, T. Cumulative and State-testate Reaction Probabilities 
via a Discrete Variable Representation-Absorbing Boundary Condition 
Green’s Function. In Tine Dependent Quantum Molecular Dynamics: 
Experiments and Theory; Broeckhove, J., Ed.; NATO ARW. 

(5) Miller, W. H. Acc. Chem. Res. 1976, 9, 306. 
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Figure 1. (a) Schematic depiction of the contours of a potential 
energy surface with two possible choices of the dividing surface 
(actually a line in this two-dimensional case), SI in the reactant 
region and Sz through the transition-state region. (b) Same as 
part a, but indicating a region of some width about the dividing 
surface S2. 

f(q) = 0 (3a) 
e.g., f(q) < 0 on the reactant side and f(q) > 0 on the 
product side, then the flux through it is given by 

where h ( [ )  is the Heaviside function, 

h([)  = 1 for ( >  0 

h([)  = 0 for ( < 0 

(Note that h’([) = 6([), the Dirac 6 function.) That is, 
hV(q)l = 0 and 1, respectively, on the reactant and 
product sides of the dividing surface, and the flux is 
the rate (the time derivative) of crossing the dividing 
surface from reactants to products. Often the dividing 
surface is specified by a given value of a reaction 
coordinate, coordinate QF, say. In this case f(q) = q F  
- QF*, where q F *  is the value of the reaction coordinate 
which defines the dividing surface, and eq 3b for the 
flux simplifies to 

m , P )  = mF-QF*)PF/m (3c) 
The third factor in the integrand of eq lb,  x(p,q), is the 
characteristic function for reaction; it can be defined 

in several equivalent ways: but the one that is perhaps 
the most intuitive (at least in classical mechanics) is as 
follows: x(p,q) = 1 if the trajectory determined by initial 
conditions (p,q) at time t = 0 goes from reactants in the 
infinite past ( t  - -a) to products in the infinite future 
( t  - +-), and x(p,q) = 0 otherwise. Because the 
integrand of the phase space average in eq l b  contains 
the 6 function S[f(q)l, all trajectories begin on the 
dividing surface, with initial conditions (p,q), and one 
runs them forward and backward in time to determine 
whether x(p,q) is 1 or 0. Because of the other 6 function, 
the microcanonical density G[E-H(p,q)l, all trajectories 
have the same total energy E.6 

The rigorous dynamical expression for N(E) ,  eq lb,  
is independent of the choice of the dividing surface (by 
virtue of Liouville’s theorem), but a wise choice for it 
facilitates the calculation. Figure l a  shows a schematic 
contour plot of a potential energy surface and two 
possible choices of the dividing surface. For dividing 
surface S1 one thus begins trajectories in the reactant 
valley and integrates long enough to determine which 
ones react, i.e., the values of (p,q) for which x(p,q) = 
1. The calculation of N(E) [and therefore k(T)] is 
greatly ~implified,~ however, by choosing the dividing 
surface SZ, which cuts through the transition-state 
region, because it is then necessary to run the trajectory 
(Le., numerically integrate the classical equations of 
motion) for only a short time in order to determine 
whether the trajectory came from reactants in the past 
and goes to products in the future. 

Transition-state theory, in fact, corresponds to run- 
ning the trajectory for zero time, Le., to the approx- 
imation that x(p,q) is 1 or 0 depending only on whether 
or not the trajectory starts off pointing in the reactive 
direction. It is thus the assumption of “direct dynam- 
ics”, that no trajectories recross the dividing surface at 
later (or earlier) times. Stated algebraically, the 
transition-state approximation is 

or if f(q) = QF - QF*, then 

XTST(P,q) = h@F) (4b) 
It is a straightforward procedure to show that with the 
approximation eq 4, eq 1 leads to conventional transition 
state theory rate expressions: e.g., if f(q) = QF - QF*, 
one finds that 

NTST(E) = 
(2ah )-‘F-”sdp’Jdq’ h [E-HF-,(p’,q’)l (5a) 

(6) Because of the two6 functions in the integrand of eq Ib, it is possible 
to carry out the integration over the reaction coordination qF and ita 
conjugate momentumpp For example, iff(q) = qF-@*,  then one obtains 

N(E) = 

x* (p’,q’;E) = x [P’.q‘,qF=qF* ,PF= f [am WHF-1 (P’,P‘) 1 1 l’*I 

whereq’,p’ = (qk,p,k), k = 1, ..., F- l , a n d H ~ . ,  is theclassicalHamiltonian 
for thesystemwith thefihdegreeoffreedomfrozenat qF’,i.e.,HF-l(p’,q’) 
= (p’)2/2m + V((1”’). 

(7) (a) Keck, J. C. Adu. Chem. Phys. 1967,13,85. (b) Horiuti, J. Bull. 
Chem. SOC. Jpn. 1938,13, 210. 
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( ~ ’ ) ~ / 2 m  + V(q’,qF*) is the classical Hamiltonian for 
the system with F - 1 degrees of freedom (i.e., on the 
dividing surface defined by q p  q F * ) .  In words, eq 5a 
says that NTST(E) is the volume of phase space on the 
dividing surface (i.e., of the F -  1 dimensional system) 
with energy less than or equal to E. The thermal rate 
constant then follows from eq la, 

where (q’,p’) = (qk,pk), k = 1, ..., F - 1, and H F - ~  = 

Miller 

where Ptun is the tunneling probability for the one- 
dimensional reaction coordinate motion, E is the total 
energy, and (tn4 are the energy levels of the “activated 
complex”, i.e., of the Hamiltonian HF-~ for motion on 
the dividing surface; E - E,,: is thus the energy in the 
reaction coordinate. It is then easy to show that with 
eq 7a for N(E),  eq 1 leads to the following quantum 
transition state theory rate constant with a one- 
dimensional tunneling correction: 

kT Q*(T) 

h QAT) 
k(T)=-- 

where Q’ is the partition function on the dividing 
surface, 

To summarize, the exact (classical) result for N(E)  
[and thus k(n1 requires that one solve the classical 
reaction dynamics, Le., begin trajectories on the dividing 
surface and follow them long enough to determine 
whether or not they are reactive. The result is 
independent of the choice of dividing surface, but a 
clever choice makes the calculation easier (i.e., the 
trajectories do not need to be followed for as long a 
time). Transition-state theory requires no dynamical 
(Le., trajectory) calculation; it is the approximation 
that a trajectory is reactive if at  t = 0 it starts out in 
the reactive direction. The transition-state approxi- 
mation for N(E)  (eq 5a) is clearly not independent of 
the dividing surface; Le., in Figure la ,  the assumption 
of no recrossing trajectories appears as though it would 
be reasonably good for the dividing surface SZ, but would 
surely be poor for the choice SI. For any dividing 
surface the transition-state approximation for N(E) ,  
eq 5a, can be shown to be an upper bound (i.e., any 
error in eq 4 is to count some nonreactive trajectories 
as reactive ones), 

NT,T(E) 2 N ( E )  (6) 
The best transition-state approximation is thus the one 
that makes NTST(E) a minimum, and this provides the 
criterion for choosing the best dividing surface.8 

Quantum Transition-State Theory? 
In attempting to construct a quantum mechanical 

version of transition-state theory it is fairly obvious 
how to quantize the motion on the dividing surface, 
i.e., the ( F  - 1) degrees of freedom in the Hamiltonian 
HF-l, because these degrees of freedom correspond to 
bounded motions. The Hamiltonian H F - ~  simply be- 
comes the quantum Hamiltonian operator; the partition 
function of the activated complex Q’ in eq 5c, for 
example, becomes a quantum partition function. 

It is more problematic to quantize the Fth degree of 
freedom, the reaction coordinate. At  the simplest level 
of approximation one typically assumes that it is 
separable from the (F - 1) degrees of freedom on the 
dividing surface. In this case the cumulative reaction 
probability is given by 

(8) For a review of many applications and ramifications of this 
variational feature, see: (a) Truhlar, D. G.; Garrett, B. C. Acc. Chem. Res. 
1980,13,440. (b) Annu. Reu. Phys. Chem. 1984,35, 159. 

kT Q*(T) k(T) = K(T)-- 
h QAT) 

where Q* is the quantum partition function for motion 
on the dividing surface, 

and K(T) ,  the tunneling correction, is the Boltzmann 
average of the one-dimensional tunneling probability, 

Whereas the classical transition state theory rate 
expression, eq 5,  requires knowledge of the potential 
energy surface only on the dividing surface, the quantum 
expression above (eq 7) requires knowledge of the 
potential energy surface for some region about the 
dividing surface (cf. Figure lb) because of the quantum 
nature of the reaction coordinate (Le., the tunneling 
correction). Furthermore, it is clearly an approximation 
to assume that the reaction coordinate, the Fth degree 
of freedom, is separable from the other (F  - 1) degrees 
of freedom. To have a quantum transition-state theory 
that is free of this approximation requires a multidi- 
mensional tunneling treatment. Johnson and h p p g  
were, to my knowledge, the first to address multidi- 
mensional tunneling in a serious way. More recent 
treatmenta5J0 have been approximations that are based 
on semiclassical tunneling theory.” All of these treat- 
menta are inherently approximate, however, and as 
Pechukas3 has noted, if one deals with multidimensional 
tunneling fully correctly, without approximation, then 
one must in effect solve the multidimensional Schro- 
dinger equation. 

One attempt at  constructing a rigorous quantum 
transition-state theory (i.e., free of the separability 
approximation) was based on “quantizing” eqs 1 and 
4 directly. For example, it is fairly clear that the classical 
phase space average in eq l b  should become a quantum 
mechanical trace, 

( 2 ~  h )-’s dp s dq[-*l - tr [-I (8) 
and H(p,q) and F(p,q) become quantum operators a 
and P. The flux operator P is in general defined by 

4’ = $ft,h(f($))l (Qa) 

i.e., the Heisenberg time derivation of h(f(q)) (cf. eq 
3b). If f(q) = q F  - q F * ,  then this commutator is easily 
evaluated, to give 

(9) Johnston, H. S.; Rapp, D. J. Am. Chem. SOC. 1961,83, 1. 
(10) (a) Marcus, R. A.; Coltrin, M. E. J. Chem. Phys. 1977,67, 2609. 

(b) Reference 8b. (c) Makri, N.; Miller, W. H. J. Chem. Phys. 1989,91, 
4026. 

(11) (a) George, T. F.; Miller, W. H. J. Chem. Phys. 1972,57,2458. (b) 
Hornstein, S. M.; Miller, W. H. J. Chem. Phys. 1974,61, 745. 
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where @F = ( h / i ) ( d / a q ~ )  is the momentum operator for 
the reaction coordinate; eq 9b is clearly the quantum 
analog of the classical flux, eq 3c. Using the quantum 
analog of the classical transition-state approximation, 
eq 4b, then gives 

NQ,TsT(E) = 2rh tr[G(E-& P hOF)l (loa) 
and 

McLafferty and Pechukas12 and Miller5J3 indepen- 
dently developed theories of this type, but though they 
do avoid having to make the separability approximation, 
they have the disappointing feature that they do not 
give the correct quantum result in the separable limit, 
eq 7, even though the dynamics is clearly “direct” in 
this limit. This difficulty is related to the nature of the 
“zero time” approximation inherent in eq 4; i.e., 
quantummechanics requires finite time (of order h/kT) 
to describe even direct dynamics correctly. To correct 
for this “zero time” defect, Tromp and Miller14 used 
flux time correlation functions to define a quantum 
transition-state theory based on short (but finite) time 
quantum dynamics, but this also has ad hoc features 
and sometimes gives unphysical results. 

The conclusion, therefore, is that, unlike classical 
mechanics, there is no rigorous (e.g., nonseparable) 
quantum version of transition-state theory that does 
not require a solution of the full multidimensional 
reaction dynamics. It does not seem appropriate, 
however, to refer to such a treatment as a transition- 
state “theory” (Le., approximation) since ipso facto it 
mdst yield the exact result. 

Rigorous Quantum Rate Theory 
Though transition-state theory does not survive the 

transformation from classical to quantum mechanics 
in a rigorous fashion,15 there is a rigorous quantum 
analog of the classical approach which begins trajec- 
tories on a dividing surface in the transition-state region 
and follows them for only short times. Thus the 
quantum rate constant can also be written in the form 
of eq 1, where the rigorous quantum expression for the 
cumulative reaction probability13b is 

where n, (n,) denotes all the quantum numbers of the 
reactants (products), and the square moduli of the 
S-matrix elements are the reaction probabilities for the 
n, - n, (state-to-state) transition. It is eq 11, in fact, 
which suggests the term “cumulative reaction proba- 
bility” forN(E): Le., the total reaction probability from 

(12) McLafferty, F. J.; Pechukas, P. Chem. Phys. Lett. 1974,27,511. 
(13) Miller, W. H. J. Chem. Phys. 1974,61, 1823. (b) Miller, W. H. 

J. Chem. Phys. 1975,62,1899. 
(14) Tromp, J. W.; Miller, W: H. J. Phys. Chem. 1986,90,3482. 
(15) Interestingly, at the semiclassical level there actually does exist 

a nontrivial version of transition-state theory that includes nonseparable 
coupling between all degrees of freedom, including the reaction coordinate. 
It involves the locally ‘good” action variables about the saddle point on 
the potential energy surface, in terms of which the claaaical motion, though 
nonseparable, is integrable. See: (a) Miller, W. H. Faraday Discuss. 
Chem. SOC. 1977,62,40. (b) Miller, W. H.; Hernandez, R.; Handy, N. C.; 
Jayatilaka, D.; Willeta, A. Chem. Phys. Lett. 1990, 62, 172. 

initial reactant state n, is given by 

nP 

and if one idealized matters by assuming that some 
initial states are completely reactive and others com- 
pletely nonreactive, i.e., Pn, = 0 or 1, then clearly N(E), 

would be the number of reactive states. This inter- 
pretation as the “number of reactive states” also comes 
from classical transition-state theory; e.g., if one neglects 
tunneling in eq 7a, then 

Le., NT~T is the number of states n* of the activated 
complex that lie below total energy E, i.e., which have 
positive kinetic energy E - E,-,* in the reaction coordinate 
at the transition state. In reality, of course, reaction 
probabilities can take on any values between 0 and 1, 
but the interpretation of N(E) as the effective number 
of quantum states which react is still qualitatively 
useful. It is also useful to note that the cumulative 
reaction probability of eq 11 is closely related to the 
yield function introduced by Coulson and Levine.16 

Though eq 11 provides arigorous quantum definition 
of the cumulative reaction probability, is not helpful in 
a practical sense because a complete state-to-state 
reactive scattering calculation is required to obtain the 
S-matrix. Is it possible to determine N(E) more 
“directly” (and thus presumably more efficiently), but 
without approximation, by anything short of such a 
complete solution of the quantum reactive scattering 
Schriidinger equation? 

A formal answer to this question was given some years 
ago, namely, that N(E) is given completely rigorously, 
and thus equivalently to eq 11, by the following 
expression:17 

N(E) = ‘/2(27rh)2 tr[G(E-a) P 6(E - &A (13) 
where p is the flux operator of eq 9. This expression 
for N(E) is manifestly independent of any reference to 
asymptotic quantum states of reactants or products. 
To see (at least heuristically) how it comes about one 
“quantizes” the classical expression eq l b  according to 
eqs 8 and 9. Noting that the characteristic function x 
can also be expressed as13s1’ 

x ( p , q )  = lim h [ f W ) ) l  = 
t-- 

the classical expression, eq lb, becomes 

N(E)  = 2rh  Jomdt tr[G(E-H)F F(t)3 (16) 
Quantum mechanically, however, the time-evolved flux 
operator is given by 

(16) Coulson, C. A.; Levine, R. D. J. Chem. Phys. 1967,47,1235. See 
also: Levine, R. D. Quantum Theory of Molecular Rate Processes; 
Oxford New York, 1969; pp 120-122. 

(17) Miller, W. H.; Schwartz, S. D.; Tromp, J. W. J. Chem. Phys. 1983, 
79, 4889. 
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p(t) = ei*t/hf)le-i*t/h 

Miller 

The parameter e in eq 19b usually plays a purely 
formal role in quantum scattering theory, but it has 
recently been pointed out that one may think of it as 
the absorbing potential that a number of personal9 have 
used in numerical wavepacket propagation calculations 
to prevent reflections at  the edge of the coordinate space 
grid. In this latter approach one adds a negative 
imaginary potential to the true potential energy func- 
tion, 

V(q) - V(q) - i4q) (20a) 
but this is clearly equivalent to adding the positive 
(operator) e to E in E - H, 

E - s - E + i ; ( q ) - A  (20b) 
Allowing e to be a (positive) function of coordinates, 
i.e., a potential energy operator, is better than taking 
it to be a constant, because it can be chosen to be 0 in 
the physically relevant region of space and only "turned 
on" at  the edges of this region to impose the outgoing 
wave boundary condition. Absorbing flux in this 
manner, and thus not allowing it to return to the 
interaction region, is analogous in a classical calculation 
to terminating trajectories when they exit the inter- 
action region. 

Figure 2 shows a sketch of the potential energy surface 
for the generic reaction H + HZ - Hz + H, with several 
different choices for the absorbing potential e(q) 
(indicated by dashed contours). e(q) is 0 in the 
transition-state region, where the reaction dynamics 
(i.e., tunneling, recrossing dynamics, etc.) takes place, 
and is turned on outside this region. All the choices in 
Figure 2 are possible, i.e., give correct results, but the 
one in Figure 2c was found to be the most efficient, i.e., 
the one that allowed one to make the interaction regfon 
as small as possible. 

With the microcanonical density operator given by 
eq 19 (with some choice for e), straightforward algebraic 
manipulations (using eqs 9a and 19) lead to the following 
even simpler form for the cumulative reaction proba- 
bility: 

N(E)  = 4 tr[&+(E)';pG+(E);rl (21a) 
where er (ep) is the part of the adsorbing potential in the 
reactant (product) valley, and e 1 er + ep. This expression 
may be evaluated in any convenient basis set which 
spans the interaction region and also extends some ways 
into the absorbing region. The explicit matrix expres- 
sion is then 

(21b) N(E)  = 4 tr[(E - it - H)-l*ep-(E + ic - H)-'-c,I 
with 

e = e, + €p 

It is interesting to note that in eq 21 all reference to a 
specific dividing surface has vanished; it is implicit that 
a dividing surface lies somewhere between the reactant 
and product "absorbing strips" (cf. Figure 2c), but there 
is no dependence on its specific choice. This is 
consistent with the earlier discussion that in classical 
mechanics N(E)  is independent of the choice of the 

(19) (a) Goldberg, A.; Shore, B. W. J .  Phys. B 1978, I f ,  3339. (b) 
Leforestier, C.; Wyatt, R. E. J. Chem. Phys. 1983, 78, 2334. (c) Kosloff, 
R.; Kosloff, D. J. Comput. Phys. 1986,63,363. (d) Neuhauser, D.; Baer, 
M. J .  Chem. Phys. 1989, 90,4351. 

and the real part of the integral is even, so that 

But the operator e-i*t/h can be replaced by the scalar 
e-iEtlh since this operator sits next to 6(E-f;l) (with a 
cyclic permutation inside the trace), and with the 
identity 

one obtains the quoted result, eq 13. 
Equation 13 is quite a beguiling expression. For 

example, in the classical expression for N(E) ,  eq lb ,  
there are a statistical factor 6(E-H), the flux factor F, 
and a dynamical factor x .  A similar structure exists 
in the quantum expression, eq 15, where the dynamical 
factor is the time integral of the time-evolved flux 
operator, i.e., x(p,q) - Jcdt &). The manipulations 
following eq 15, however, lead to the result eq 13, which 
appears to have no dynamical information, Le., only 
the statistical operator 6(E-f;l) and flux operator P are 
involved in eq 13. The steps which convert eq 15 into 
eq 13, however, are reversible, so that the dynamical 
information must be contained implicitly in eq 13. This 
is another example of the fact that, in quantum 
mechanics, dynamics and statistics are inseparably 
intertwined; e.g., a wavefunction describes the dy-  
namical motion of the particles and also their statistics. 
Finally, I note that one cannot convert eq 13 directly 
into a corresponding classical expression by replacing 
the trace by a phase space average and the operators 
by the corresponding functions (as one can do for eq 
15). If one tries, the result is 

N(E)  = 

1/2(2nn)2(2*h)-FJd~Sdq W-H(p,q))2 F(p,qI2 (18) 
which appears to be infinite (because of the squares of 
the 6 functions); the factor h2 (which doesn't divide out 
in normalization) is 0 in the classical limit, however, so 
eq 18 is simply indeterminant. 

The difficult part of eq 13 to evaluate is the 
microcanonical density operator, S(E-fl), which is 
usually18 expressed in terms of the outgoing wave 
Green's function (actually an operator), 

(194 = - 1 Im &+(E) n 
where 

&+(E) = lim(E + ie - I3-l (1%) 

e is a positive constant which imposes the outgoing wave 
boundary condition on the Green's function (hence the "+" designation), or it may be thought of as a conver- 
gence factor in the expression for G+ in terms of the 
time evolution operator e-i*t'h: 

f-0 

&+(E) = (ih)-lJomdt ei(E+if)t/he-i*t/h 

the factor exp(-et/h) in the integrand makes the time 
integral well-behaved in the long time ( t  - -) limit. 

(18) See, for example: Newton, R. G. Scattering Theory of Waves and 
Particles; Springer-Verlag: Berlin, 1982; p 176 ff. 
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Figure 2. Solid lines are contours of the potential energy surface 
for the H + Hz - Hz + H reaction. Broken lines are contours 
of the absorbing potential (which is 0 in the central part of the 
interaction region and “turned on” at the edge), for three possible 
choices of it. The points are the grid points which constitute the 
‘basis set” for the evaluation of the quantum trace, eqs 21 and 
22. 
dividing surface provided that one actually determines 
the exact dynamics, as is being done here quantum 
mechanically. 

Equation 21 provides the first practical scheme for 
determining the rate constant for a chemical reaction 
absolutely correctly, but directly, i.e., without having 
to solve the complete reactive scattering problem. This 
is not a transition-state “theory” since calculation of 
the Green’s function, the matrix inverse of (E  + ir - H), 
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is equivalent to solving the Schrodinger equation, i.e., 
it generates the complete quantum dynamics. Since 
this is required only in the transition-state region 
(between the reactant and product absorbing strips), 
one may think of this quantum mechanical calculation 
as the analog of a classical trajectory calculation which 
begins trajectories on a dividing surface in the tran- 
sition-state region and follows them for a short time to 
see which ones are reactive. 

Illustrative Examples 

In recent applications4 it has proved useful to employ 
a set of grid points in coordinate space as the basis set 
in which to evaluate eq 21b. These discrete variableFO 
pseudospectral,21 or collocation methods22 are proving 
quite useful for a variety of moIecular quantum 
mechanical calculations. The primary advantages of 
such approaches are that (1) no integrals are required 
in order to construct the Hamiltonian matrix (e.g., the 
potential energy matrix is diagonal, the diagonal values 
being the values of the potential energy function at  the 
grid points) and (2) the Hamiltonian matrix is extremely 
sparse (so that large systems of linear equations can be 
solved efficiently). 

Since the absorbing potential is diagonal in a grid 
point representation, eq 21b for the cumulative reaction 
probability simplifies to 

where the index labels the grid points (the “basis 
functions”) and Gij? is the ($) element of the inverse 

sum over i and i’ includes only points in the reactant 
and product absorbing regions, respectively, since ei’ 
and ri tp  are 0 at  other grid points. 

Figure 2c shows the set of grid points and the 
absorbing potentials which yield accurate results for 
the standard test problem, the collinear H + H2 - Hz 
+ H reaction. The important feature to see here ie how 
close the absorbing potentials can be brought in and 
how localized the grid can be taken about the transition- 
state region. This is the region in which it is necessary 
to determine the quantum dynamics in order to obtain 
the correct result for N(E)  [and thus k(T)]. No 
information about reactant and product quantum states 
is involved in the calculation. 

Figure 3a shows the cumulative reaction probability 
so obtained4“ for the collinear H + H2 reaction. Apart 
from noting that it is correct (by comparison with any 
number of earlier scattering calculations using eq l l ) ,  
it is interesting to observe that at  the higher energies 
N(E)  is not a monotonically increasing function of 
energy. This is a signature23 of transition-state theory- 
violating dynamics, i.e., recrossing trajectories in a 
classical picture, and the result of a short-lived collision 
complex that causes resonances in a quantum descrip- 
tion. 

For the H + Hz reaction in three-dimensional space 
one needs to add in the bending degree of freedom in 

of the matrix {&,i!(E+is) - Hiif), with ei = rir + eip. The 

(20) (a) Lill, J. V.; Parker, G. A.; Light, J. C. J. Chem. Phys. 1986,85, 
900. (b) Muckerman, J. T. Chem. Phys. Lett. 1990, 173, 200. 

(21) (a) Friesner, R. A. Chem. Phys. Lett. 1986,116,39. (b) Friesner, 
R. A. J. Chem. Phys. 1986,85, 1462. 

(22) (a) Peet, A. C.; Miller, W. H. Chem. Phys. Lett. 1988, 149, 257. 
(b) Yang, W.; Peet, A. C.; Miller, W. H. J. Chem. Phys. 1989,91, 7537. 
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Figure 3. Cumulative reaction probability for the H + Hz - Hz + H reaction: (a) for collinear geometry (ref 4a); (b) three- 
dimensional space for total angular momentum J = 0 (ref 4b). 

the transition-state region and also allow the three- 
atom system to rotate. Figure 3b shows the cumula- 
tive reaction probability ~ b t a i n e d ~ ~ f o r  zero total angular 
momentum (J  = 0), and again it is in complete 
agreement with results24 obtained from eq 11 via full 
scattering calculations. The number of grid points 
needed for convergence ranges from somewhat less than 
-170 at the lowest energies shown to -1200 at the 
highest energies. (The presence of shorter de Broglie 
wavelengths at  higher energy requires a smaller spacing 
between the grid points.) 

(23) N(E)  will always increase monotonically with E in a transition- 
state approximation. It is easy to prove this classically, e.g., from eq 5a. 
If the dividing surface is held fixed as E varies, then from eq 5a one has 

$$VTsT(E) = (2~h)-‘~-’’Jdp’Jdq’ 6[E-HF-,1 

which is clearly positive. Furthermore, if the dividing surface is 
parametrized and allowed to vary with energy, the above equation still 
holds because any parameters in the dividing surface are chosen 
variationally. Thus if the dividing surface (and thus the Hamiltonian 
Hp.,) depend on some parameters c1, cp, ... = ( c k ) ,  then the expression for 
N,I.s~ will depend not only on the energy E but also on these parameters, 
N ~ I . ~ I . ( ~ , C ~ , C ~ , . , . ) .  The values of the ck’s are chosen, however, by the 
variational condition 

a 
8% 

0 = -NT~TW,{cJ) 

which determines specific values Ck(E). Thus the variationally optimized 
result for the cumulative reaction probability is NTST(E,C~(E),C~(E), ... ) 2 

N,I.S~@). Then 

For the three-dimensional case (Figure 3b), N(E)  is 
seen (to the eye, at  least) to increase monotonically 
with E,  and in fact one has for many years that 
the reaction dynamics tends to behave more transition- 
state-like in higher physical dimensions (other things 
being equal). (Figure 3b also shows the staircase 
structurez4 which is a remnant of microcanonical 
transition-state theory in the separable approxima- 
tion,2‘j i.e., eq 7a.) Resonances do exist in three 
dimensions; they are simply masked more by the 
nonresonant (direct) scattering in three dimensions than 
they are in one dimension. They can be observed in 
more detailed state-to-state differential scattering cross 
sections for the H + H2 reaction,27 but not in N(E),  or 
K(T), which are highly averaged quantities. 

It will be possible to carry out these rigorous quantum 
calculationslsimulations for a variety of simple chemical 
reactions, e.g., atom-diatom (A + BC - AB + C) 
reactions and even some four-atom reactions (e.g., H + 
HzO - Hz + OH), but for larger systems it will of course 
be necessary to introduce approximations. If the 
reaction takes place through a well-defined transition 
state, then it is fairly clear how an approximate 
calculation would proceed: using normal coordinates 
appropriate to the transition state,lb it is typical that 
only a few modes are strongly coupled to the reaction 
coordinate, so that one would treat these degrees of 
freedom by full matrix inversion to obtain the Green’s 
function, with other degrees of freedom being included 
perturbatively. This is standard fare for molecular 
quantum calculations, e.g., as for vibrational eigenval- 
ues,28 and there is room for much physical insight in 
implementing these schemes (suddedadiabatic sepa- 
rations, sequential decoupling or contractions, etc.). 

Concluding Remarks 
Though there is no rigorous quantum mechanical 

version of transition state theory, i.e., a quantum theory 
whose only approximation is the assumption of “direct 
dynamics”, there is a quantum analog of the classical 
approach which requires only localized, or short time 
dynamics to determine the reaction rate completely 
correctly. Thus eq 21 (or 22) givesan absolutely rigorous 
expression for the cumulative reaction probability (and 
then the rate constant via eq la), and one is required 
to solve the quantum dynamics (Le., invert the matrix 
( E  + ie - H), which is equivalent to solving the 
Schrijdinger equation) only locally, in the transition- 
state region bounded by the absorbing strips across the 
reactant and product valleys, with no information about 
reactant or product quantum states being required. This 
provides a framework for carrying out completely 
rigorous calculations (“quantum simulations”) for the 
rate constants of simple reactions, and it is also a 
rigorous starting point for making systematic approx- 
imations (e.g., quantum perturbation theory) necessary 
to treat more complex chemical systems. The dividing 

(24) Chatfield, D. C.; Friedman, R. S.; Truhlar, D. G.; Garrett, B. C.; 
Schwenke, D. W. J. Am. Chem. SOC. 1991,113,486. 

(25) Chapman, S.; Hornstein, S. M.; Miller, W. H. J. Am. Chem. SOC. 
1975, 97, 892. 

(26) See, for example: Robinson, P. J.; Holbrook, K. A. Unimolecular 
Reactions; Wiley: New York, 1972; p 93 ff. 

(27) Miller, W. H.; Zhang, J. Z. H. J .  Phys. Chem. 1991, 95, 12. 
(28) See, for example: (a) Bacic, Z.; Light, J. C. Annu. Reo. Phys. 

Chem. 1989,40,469. (b) Bowman, J. M., Ed. Special issue on “Molecular 
Vibrations”. Comput. Phys. Commun. 1988, 51. but the last terms are all 0 because of the variational conditions. 
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surface (cf. Figure la) so central to classical transition- 
state theory has been effectively replaced by a dividing 
region, the region between the two absorbing strips [cf. 
Figures l b  and 2cl. By solving the quantum dynamics 
in this region one is determining multidimensional, 
nonseparable tunneling effects and also any recrossing 
dynamics that violates the transition theory assumption 
of “direct dynamics”; i.e., as has been emphasized 
throughout this Account, a treatment that describes 
multidimensional tunneling effects correctly must also 

describe all the dynamics in the transition-state region 
correctly, including recrossing dynamics that violates 
transition-state theory. Equation 21 (or 22) provides 
the basis for carrying out such a local calculation of the 
quantum reaction dynamics. 
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